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ABSTRACT: Atomic charge is a fundamental quantum chemical H )

property essential for advancing drug design and discovery. Although ©/ “NH, : \*‘}J
quantum mechanics (QM) methods offer the highest level of accuracy, Ry
their computational demands scale quadratically with the number of |
atoms, limiting their practicality for large-scale applications. In light of
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this, empirical and semiempirical methods have been introduced to ( ] _" DDEC 4 Charge
improve computational efficiency, albeit often at the expense of ¢ DDEC 78 Charge
accuracy. The advent of artificial intelligence has witnessed a growing ChargeNet RESP Charge

application of machine learning (ML) techniques to accelerate atomic

charge predictions. However, existing ML models often suffer from low accuracy and limited generalization capabilities. To address
these challenges, we introduce an advanced equivariant graph attention neural network specifically engineered to model long-range
atomic electrostatic interactions with high precision. This model introduces a sophisticated global graph attention mechanism,
enabling it to capture charge contributions across multiple scales. By utilizing a combination of structural symmetry-preserving
transformations and multiscale attention, our approach not only preserves the inherent symmetries of molecular structures but also
substantially improves the model’s accuracy, generalization, and robustness in complex scenarios. Our empirical analyses
demonstrate that, compared to leading baseline models, the proposed model improves charge prediction accuracy by over 40% on
average across various charge-calculation schemes. Remarkably, the model achieves superior performance on the external RESP
(restrained electrostatic potential) test data sets, with a 54.6% improvement over the baseline. Additionally, we evaluated our charge
model under the setting of virtual screening, where it outperforms both the OPLS3 charges and baseline deep learning models across
all evaluation metrics, highlighting its extensive potential for scientific discovery.

B INTRODUCTION However, its accuracy heavily relies on correction parameters,
limiting its applicability to complex or uncommon molecular
structures. Similarly, the OPLS3 charge calculation adopts a
force-field-based model,'”"" achieving moderate improvements
in computational efficiency. Clearly, while these methods
provide speed advantages over QM methods, they still partially
rely on QM calculations and remain computationally intensive.

Atomic charge is a fundamental and essential property of
molecules, describing electrostatic potential and intermolecular
electrostatic interactions. For both drug and material
molecules, the distribution of charges directly influences key
physicochemical properties such as chemical reactivity,
electronic transport properties, and band structure. In

. . . . On the other hand, non-QM methods, such as Gasteiger
computational chemistry, atomic charges are widely employed b 1 d 1 litati k h Timited
in molecular dynamics simulations, molecular docking, and charges, - provide only qualitative estimates with himite

HOMO-LUMO gap calculations,'™* to name a few accuracy. Balancing computationa? e.fﬁciency a.nd accuracy
remains a perennial challenge, significantly hindering the

rominent applications. Accurately calculating atomic charges
P PP Y 8 8 practicality of atomic charge calculations.

typically requires high-precision quantum mechanics (QM) . i . L
methods, such as restrained electrostatic potential (RESP) The recent trend in machine learning (ML) applications for

fitting.® However, the computational complexity of these molecular property prediction has driven the development of

. . . 13—15 . . s
methods often scales exponentially with the number of atoms,’ innovative data-driven approaches, presenting promising

making them impractical for many large-scale systems of real-

world interests. To improve the computational efficiency, some Received: March 19, 2025
semiempirical methods have been developed. For example, Revised:  June 8, 2025
AMI1-BCC charges’ are obtained using the Austin Model 1 Accepted:  June 9, 2025
(AM1) method to calculate the molecular orbitals and Published: June 18, 2025

molecular charge distribution, followed by corrections using
empirical parameters in bond charge correction (BCC).””
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Figure 1. Overview of the ChargeNet framework. (A) 2D atomic descriptors and (B) 3D geometric features are extracted and embedded as node
(Z) and radial (R) features, respectively. (C) These features are processed through an Equivariant Graph Attention Network (EGAT), which
performs stacked edge, node, and coordinate updates. A fully connected molecular graph enables the model to capture both bonded and
nonbonded interactions. (D) The predicted atomic charges serve as input for downstream tasks such as virtual screening.

solutions for efficiently and accurately estimating atomic
charges. The first generation of charge prediction models
predominantly relied on traditional ML algorithms. In 2013,
Rai et al.'® developed a partial charge distribution model based
on symmetry functions using a random forest (RF) algorithm,
achieving a mean unsigned error (MUE) of 0.03 e on a test set
of 5000 molecules. Similarly, in 2018, Bleiziffer et al.'’
collected a data set of 130,000 drug-like molecules and
calculated DDEC charges to train an RF model, obtaining R*
values of 0.983 and 0.997 on two external test sets. Since then,
interests in atomic charge prediction has steadily increased,
with numerous studies exploring similar methodologies."*>’
In 2020, Wang et al.'® proposed a novel molecular descriptor,
Atom-Path-Descriptor (APD), which characterizes the chem-
ical environment around atoms through atomic pair paths.
Based on APD, they trained the RF and XGBoost models for
atomic charge prediction. In 2021, Kancharlapalli et al.'”’
selected a subset from the computation-ready experimental
metal—organic framework (CoREMOF-2019) database and
employed density functional theory (DFT) to construct a data
set of partial atomic charges for MOFs, subsequently training
an RF model. While these works have provided new avenues
for atomic charge estimation, significant room for improve-
ment remains. A major limitation of traditional ML algorithms

lies in their reliance on predefined molecular descriptors or
fingerprints as input features. These descriptors are often
manually crafted and may fail to fully capture the intricate
structural and electronic properties of molecules. This
constraint prevents traditional models from effectively
representing both fine-grained and global graph-level molecular
information, which can limit their predictive accuracy for
complex tasks.”

This limitation has motivated the development of the second
generation of atomic charge prediction models based on deep
learning, leveraging the inherent advantages of graph neural
networks (GNNs) in processing molecular graphs and
effectively capturing molecular structures.”” >* GNNs are
particularly well-suited to address the limitations of traditional
methods as they can model complex relationships and
topologies within molecular graphs. In these models, nodes
represent atoms, while edges denote the chemical bonds. Each
central atom aggregates information from its neighboring
atoms, enabling automatic learning of its chemical environ-
ment.”>*® To advance atomic charge prediction, Wang et al.
(2021) developed DeepAtomicCharge,”” a GNN-based model
designed to predict atomic charges of small molecules under
varying dielectric constants. This model aimed to offer a fast
and accurate approach for determining partial charges,
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facilitating molecular simulation and reactivity analysis.
Building on this, Jiang et al. (2022) introduced Super-
AtomicCharge,28 an enhanced model leveraging transfer
learning to better capture molecular structure and improve
accuracy across diverse molecules. After training on molecules
with varying dielectric constants, SuperAtomicCharge demon-
strated high predictive accuracy. However, atomic charge
prediction shares characteristics with other tasks like point
cloud modeling, 3D molecular structure prediction, and N-
body simulations. All these tasks require careful handling of 3D
translational and rotational symmetries.””*° Classical GNN
models inherently preserve translational invariance but struggle
to cover the full set of symmetries, particularly under 3D
rotations and reflections, limiting their ability to distinguish
isomorphic from nonisomorphic structures and surpass the 1-
WL test.’”** This limits their ability to fully capture the
chemical environment of atomic charges, highlighting the need
for further advancements to enhance model generalization and
accuracy in predicting atomic charge distributions across
diverse molecular structures.””**

To address the aforementioned challenges, we propose
ChargeNet, an equivariant graph atomic charge prediction
framework that deeply integrates the principles of equivariance.
ChargeNet offers several key advantages. (1) Symmetry
preservation and robustness. ChargeNet ensures that the
symmetry and transformation properties of the input data are
preserved. When handling transformations such as rotation,
translation, and scaling, the model automatically adjusts while
retaining the corresponding transformations in its output. This
property enhances the robustness and generalization capa-
bilities of the framework. (2) Efficient global information
capture. Classical GNNs are limited in their receptive fields,
often requiring multiple layers to capture global information,
leading to information loss and increased computational cost.
To address this, ChargeNet equips a GNN with the attention
mechanism,* enabling the model to adaptively learn relation-
ships and connection weights between nodes, effectively
combining local and global information. Furthermore, using
multiple attention heads to process input data in parallel
enables the model to learn different relationships and feature
representations, enhancing its ability to perceive information at
different scales and abstraction levels. This adaptive attention
mechanism allows ChargeNet to accurately focus on and
utilize useful information, extracting key features and
information, thus improving its expressiveness and general-
ization. (3) Modeling long-range interactions. Representing
covalent bonds as edges may not be optimal for atomic charge
prediction, as electronic interactions are long-range inter-
actions involving all pairs of atoms, not just those connected by
covalent bonds.***” In our approach, we employ a fully
connected adjacency matrix to represent atomic interactions,
enabling the model to directly perceive global information. We
evaluated ChargeNet on three types of atomic charges,
including DDEC4 (¢ = 4), DDEC78 (¢ = 78), and RESP
charges, and demonstrated its superiority over the state-of-the-
art GNN-based predictors and machine learning-based
predictors, achieving improvements exceeding 40% on average
across all charge types. Furthermore, the model demonstrates
outstanding performance on external RESP test data sets,
achieving a 54.6% improvement over the baseline models.
Additionally, ChargeNet excelled in structure-based virtual
screening applications, outperforming commonly used atomic
charge methods. This highlights its exceptional scoring and

screening capabilities, making it a powerful tool for computa-
tional chemistry and drug discovery.

B RESULTS AND DISCUSSION

The overall framework of ChargeNet is illustrated in Figure 1.
The model begins by embedding atomic features™ (e.g,
nuclear charge, formal charge, and the number of radical
electrons) and geometric information (e.g., interatomic
distances) into learnable node (Z) and radial (R) representa-
tions. These embeddings are then processed by an Equivariant
Graph Attention Network (EGAT), which iteratively updates
node and edge features through attention-based message
passing. Each update block employs directional attention via
query-key-value mechanisms to capture spatial anisotropy.
While the graph edges are typically defined based on a cutoff
radius in interatomic distances, a fully connected adjacency
matrix can also be used. This design ensures that both covalent
and noncovalent interactions are captured. Given that partial
atomic charges are sensitive to long-range, nonbonded
interactions, a fully connected graph is critical for accurate
modeling. Furthermore, the use of multihead attention
facilitates the extraction of hierarchical and multiscale features,
enhancing the overall predictive accuracy. The final atomic
charges predicted by ChargeNet can be directly applied to
downstream tasks such as virtual screening.

A core innovation of ChargeNet lies in its careful handling of
long-range electronic effects and geometric symmetries. Long-
range electronic interactions are inherently nonlocal and
cannot be captured effectively by models limited to local
neighborhoods. By leveraging a fully connected graph structure
and attention-based message passing, ChargeNet explicitly
models these interactions across molecular space. Simulta-
neously, the model is designed to be E(3)-equivariant,
meaning that its predictions respond predictably and
consistently to global transformations such as rotations and
translations of the input geometry. This is achieved by allowing
both node and edge features to be dynamically updated during
message passing in a symmetry-aware manner. As a result,
ChargeNet can effectively distinguish conformers with differ-
ent 3D geometries while preserving the transformation
consistency between inputs and outputs. A formal proof of
this equivariance property is provided in the Methods section.

Impact of Graph Connectivity on Atomic Charge
Prediction Tasks. In the SuperAtomicCharge model, the
significance of 3D information for graph representation and
properties has been well demonstrated. The spatial positions
and relative distances between atoms effectively convey the
importance of atomic interactions. Within graph neural
networks, information propagation primarily relies on edges,
so edge features generally need to be fully considered, such as
torsion angles. However, in atomic charge prediction, these
additional edge-specific features are generally not essential.
The task’s intrinsic simplicity allows models to capture
sufficient structural features using only the most fundamental
inputs: atomic coordinates and node features. Since atomic
charges represent a relatively straightforward atomic property,
the model can effectively learn the necessary interactions and
relationships without relying on complex edge-based features.

Nevertheless, it is essential to account for the fact that
electrostatic interactions are a type of long-range force with
non-negligible influence over considerable distances. The
message-passing process in graph-based models heavily relies
on the edge connection information we provide. Should we
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directly follow the common practice of using the topological
graph identified by RDKit, which generally connects atoms
based on covalent bonds? To investigate this, we conducted
experiments on our proposed EGAT (equivariant graph
attention transformer) module using two distinct graph
representations: a fully connected molecular graph and a
molecular graph based on covalent bond adjacency matrices.
These experiments were designed to evaluate how the choice
of edge connectivity impacts the model’s ability to capture
electrostatic interactions and predict atomic charges effectively.

As shown in Table 1, employing a fully connected adjacency
matrix for the atomic charge prediction task significantly

Table 1. Impact of Different Versions of Graph
Connectivity on Prediction Results across the RESP,
DDEC4, and DDEC78 Datasets (Randomly Split 80:10:10
into Training, Validation, and Test Sets)

type of charge feature RMSE/e
train valid test
DDEC4 full connection 0.00476 0.00433 0.00457
bond edge 0.00678  0.00712  0.00694
DDEC78 full connection 0.00584 0.00585 0.00597
bond edge 0.00661 0.00673 0.00634
RESP full connection 0.03273 0.03556 0.03574
bond edge 0.03741 0.03912 0.03897

outperforms the covalent bond-based adjacency matrix across
all three data sets, with improvements ranging from 20% to
30%. These results highlight that fully connected approach
provides the model with better representation capabilities.
Therefore, it also suggests that using covalent bonds as the
adjacency matrix for message passing results in some degree of
information loss. In reality, the bond length of covalent bonds
typically ranges from 1 to 3 A, but the range of electrostatic
interactions far exceeds this distance, which undoubtedly
causes some discrepancies. To address this, an alternative
approach involves setting a distance threshold, where pairs of
atoms within this threshold but not covalently bonded are
treated as noncovalent connections. By using one-hot encoding
to distinguish between covalent and noncovalent bonds, the
model can more effectively differentiate between covalent
interactions and noncovalent interactions. This approach
enhances the interpretability of the model and provides a
more accurate representation of molecular interactions.
Impact of Equivariant Graph Neural Networks on
Atomic Charge Representation. In atomic charge pre-
diction tasks, our analysis of the data set indicates that over
90% of the molecules contain ring structures, with a notable
presence of macrocycles and polycyclic systems. This inherent
structural complexity often leads to high molecular symmetry,
posing a challenge for effective feature extraction. The design
of equivariant graph neural networks (GNNs) allows them to
be sensitive to these symmetry transformations, which helps in
more effectively capturing the characteristics of molecular
structures. By learning the intricate relationships among nodes,
these networks can adapt to the complex interactions between
atoms. In this regard, ChargeNet demonstrates a significant
advantage over SuperAtomicCharge. The introduction of
multihead attention mechanism equips equivariant GNNs
with a broader global perspective, which is particularly crucial
for predicting atomic charges. Since atomic charges are
strongly influenced by surrounding atoms (both near and

far), so the network’s ability to comprehensively capture both
local and global interactions between atoms leads to more
accurate charge predictions. As shown in Figure SI, we
visualized both global and local attention weights, which
emphasize key short-range interactions while maintaining
sensitivity to long-range dependencies. Equivariant GNNs are
naturally suited for handling graph structures with geometric
information. In atomic charge prediction, 3D coordinates
provide spatial relationships between atoms, which are
essential for understanding atomic interactions and charge
distributions. Equivariant GNNs leverage this geometric
information effectively, making them highly advantageous in
this domain.

As illustrated in Table 2, the prediction performance on
DDEC4 and DDEC78 charges are quite similar, whereas the

Table 2. Impact of Different Models on Prediction Results
Across the RESP, DDEC4, and DDEC78 Datasets

type of
charge model RMSE/e
train valid test
DDEC4 AP-RF 001433 001671  0.01659
ADP-RF 0.00688  0.01038  0.01043
DeepAtomicCharge® 001127  0.01142  0.01148
SuperAtomicCharge®™  0.00912  0.00935  0.00942
ChargeNet 0.00476  0.00433  0.00457
DDEC78  AP-RF 0.01640 001914  0.01886
ADP-RF 0.00819 001223  0.01208
DeepAtomicCharge®  0.01382  0.01413  0.01404
SuperAtomicCharge®  0.01134  0.01197  0.01197
ChargeNet 0.00584  0.00585  0.00597
RESP AP-RF 0.03541  0.06349  0.06353
ADP-RF 0.03500  0.05509  0.05472
DeepAtomicCharge”  0.05041  0.05481  0.05469
SuperAtomicCharge™ ~ 0.04286  0.04829  0.04805
ChargeNet 0.03271  0.03551  0.03570

performance on RESP charges is noticeably lower. This
discrepancy arises because RESP charges rely on fitting to the
molecule’s electrostatic potential (ESP) and introduce
constraints to balance atomic charges, thus making RESP
well-suited for capturing subtle variations in molecular charge
distribution and reliable in describing molecular electrostatic
interactions. In contrast, the DDEC methods emphasize
molecular polarization effects and electronic density distribu-
tions, which may sacrifice some ESP fitting accuracy. In this
sense, RESP charges are more precise and require finer-grained
information, making them more challenging to fit accurately.
Furthermore, we applied a post hoc correction to the predicted
atomic charges to ensure total charge conservation. As shown
in Figure S2, the R? values before and after correction both
remain at 0.9996 when compared with the reference charges,
indicating that this correction preserves the model’s high
predictive accuracy while enforcing chemically consistent
charge distributions.

Furthermore, as shown in Table 2, the ChargeNet model
demonstrates a significant advantage in charge prediction
across different types. In the prediction of DDEC4 charges,
ChargeNet outperforms the second-best model by 51.4%; for
DDEC?78 charges, the improvement is 50.1%; and for RESP
charges, it is 25.7%. These results indicate that ChargeNet

https://doi.org/10.1021/acs.jcim.5c00602
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Figure 2. Distribution of predicted and calculated RESP charges for different elements in the external test set of 1000 molecules.

exhibits high accuracy and strong generalization capability in
charge prediction tasks.

Validation Testing on External Test Set. For models
predicting basic properties, generalization ability is a crucial
metric. The data we collect for training represents only a tiny
fraction of the vast molecular space. Therefore, it is desirable
for the model to maintain predictive accuracy while exhibiting
strong generalization ability for property prediction on unseen
data. This is a key advantage of many traditional tools, which,
despite not being highly accurate, maintain a stable perform-
ance across different parts of the chemical space. To evaluate
this, we randomly selected 1000 molecules with 40—60 atoms
from the ChEMBL database®® and compared their chemical
space distribution with that of the training set, as shown in
Figure S3. We then calculated their RESP charges using the
Gaussian program to construct an external test set. We
compared our ChargeNet model with both the Super-
AtomicCharge and DeepAtomicCharge models on the external
data set. ChargeNet achieved an RMSE of 0.0608 e and an R
of 0.947, significantly outperforming the SuperAtomicCharge
model (RMSE: 0.1339 e, R*: 0.800) and the Deep-
AtomicCharge model (RMSE: 0.1691 e, R* 0.782). This

represents a 54.6% improvement in accuracy over Super-
AtomicCharge and a 64.0% improvement over DeepAtomic-
Charge, highlighting the superior performance of ChargeNet.
In addition to its superior accuracy, ChargeNet demonstrated
strong generalization ability, as evidenced by the consistent
performance observed when transitioning from the RESP
training and testing sets to this external data set, with no
significant drop in predictive accuracy. Moreover, compared to
RESP—which relies on computationally intensive quantum
mechanical (QM) calculations—ChargeNet offers orders-of-
magnitude faster predictions. Together, these results highlight
ChargeNet as a robust and efficient model for charge
prediction across diverse data sets.

As shown in Figure 2, we evaluated the charge prediction
accuracy of the model for each type of element within the
molecules, focusing on elements commonly involved in drug
design, such as hydrogen (H), carbon (C), nitrogen (N),
oxygen (O), fluorine (F), and phosphorus (P). The model
demonstrates high accuracy across these elements, with
particularly strong performance for hydrogen atoms, which is
critical for accurately capturing hydrogen bonding interac-
tions—key determinants of molecular stability and binding
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specificity. For electronegative heteroatoms like O and N, the
model achieves precise charge predictions essential for
modeling electrostatic interactions and polar binding sites,
which are directly linked to solubility, reactivity, and binding
affinity in protein—ligand complexes. Furthermore, the model
performs well on biologically relevant but less common atoms,
such as P and S, which are crucial for understanding
interactions in enzyme activity, phosphorylation, and disulfide
bonding.*' This robust prediction capability ensures accurate
calculations of hydrogen bonds, van der Waals forces,
hydrophobic interactions, and electrostatic forces, highlighting
the model’s potential as a reliable tool for guiding molecular
design and optimizing interactions critical to drug discovery.
ChargeNet Applied in Protein—Ligand Virtual
Screening. Atomic charges are critical in drug design as
they determine key intermolecular interactions such as
electrostatic interaction and hydrogen bonding. Accurate
atomic charges prediction models can significantly influence
the enrichment efficiency of active compounds in virtual
screening, ultimately shaping the efficiency of drug discovery.
To comprehensively validate the performance of ChargeNet,
we designed a scenario to evaluate the model’s screening
power in virtual screening. Caspase-8, a cysteine protease
involved in the death receptor-mediated apoptosis pathway, is
strongly linked to the progression of various inflammatory
conditions, such as immune-related disorders, neurodegener-
ative diseases, and cancer, positioning it as a highly promising
therapeutic target."””** Furthermore, the active site of Caspase-
8 contains a wealth of hydrogen bond donor and acceptor
residues. In the crystal structures of known inhibitor
complexes, a complex hydrogen bond network and significant
ionic interactions have been observed (Figure 3). This
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Figure 3. Protein—Ligand interactions diagram for Caspase-8 with
inhibitor (PDB code: 3KJQ).

structural feature suggests that Caspase-8 exhibits a high
sensitivity to the charge distribution of its ligands. In light of
the considerations mentioned above, we selected Caspase 8
(PDB code: 3H11)* as the drug target, with the data set
sourced from Jiang et al.”* This data set comprises 217 actives
with ICy, < 10 uM, retrieved from BindingDB,45 and 7000
decoys randomly selected from the ChemBridge database,

achieving an active-to-inactive ratio of approximately 1:30.
Protein and ligand preprocessing was performed using
Schrodinger’s Protein Preparation Wizard and LigPrep module
with default parameters. The receptor grid was centered on the
centroid of the cocrystallized ligand, with dimensions of 20 X
20 x 20 A. All compounds were docked using Glide*® with
standard precision (SP) scoring mode, and the effects of three
types of atomic charges on virtual screening performance were
evaluated: the default OPLS3e charges, along with the RESP
and DDEC4 charges predicted by ChargeNet, with normal-
ization applied to maintain charge conservation. The results
were evaluated using three metrics: the p-value of the Mann—
Whitney U test, the enrichment factor, and the area under the
curve (AUC) value of the receiver operating characteristic
(ROC) curve.

As shown in Figure 4, based on the three metrics (P-value,
AUC, and enrichment factor), the predicted DDEC4 charges
exhibited the best virtual screening performance. For caspase-
8, the p-value for DDEC4 charges (Figure 4C) was 2.50 X
107*, and the AUC (Figure 4D) was 0.878, significantly
outperforming the results obtained with the original OPLS3e
charges (Figure 4A,D, p-value = 2.22 X 107*°, AUC = 0.798).
Compared to random selection, the probability of identifying
actives was nearly 16 times higher with DDEC4 charges, while
with OPLS3e charges, this increase was only 4 times.
Furthermore, although RESP charges (Figure 4B) slightly
underperformed OPLS3e charges in their ability to distinguish
active from inactive peaks (with a p-value of 5.84 X 10~ and
an AUC of 0.780), the early portion of the ROC curve was
higher than that of OPLS3e, indicating superior early
enrichment power. The enrichment factor shown in Figure
4E further confirmed that the early enrichment rate for RESP
charges was nearly twice that of OPLS3e charges. QM
methods for RESP charges calculation typically require a day
on a single-core CPU, while ChargeNet accelerates this by
several orders of magnitude. These results highlight the
significant potential and value of ChargeNet in large-scale
virtual screening, particularly in enhancing early enrichment
efficiency and improving screening accuracy.

B CONCLUSION

In this study, we propose a novel framework, ChargeNet,
designed to predict atomic charges in drug molecules—a
critical parameter involved in computational and analytical in
drug discovery. Our model is meticulously crafted to
incorporate long-range electrostatic interactions and molecular
geometric symmetry, leveraging a graph attention mechanism
to capture interaction information effectively. When evaluated
on benchmark data sets, ChargeNet demonstrated over 40%
on average improvement in charge prediction accuracy across
various charge types compared to state-of-the-art baselines.
Moreover, on the RESP external test set, the model surpassed
the top-performing existing model by 54.6%. This marks a
significant breakthrough in atomic charge prediction. To
further assess its applicability in real-world scenarios, we
conducted a virtual screening study targeting Caspase 8, where
the atomic charge predictions from ChargeNet substantially
enhanced screening performance, indicating its potential for
large-scale batch processing. ChargeNet strikes an optimal
balance between prediction accuracy and computational
efficiency. For broader applications, such as in biomaterials
and synthetic chemistry, we plan to expand the data set and
refine the model to address domain-specific requirements.

https://doi.org/10.1021/acs.jcim.5c00602
J. Chem. Inf. Model. 2025, 65, 10364—10374


https://pubs.acs.org/doi/10.1021/acs.jcim.5c00602?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.5c00602?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.5c00602?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.5c00602?fig=fig3&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.5c00602?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Chemical Information and Modeling pubs.acs.org/jcim

A o B c
10.0% - BN Actives 10.0% -
10.0% - 0 Decoys
s > | 5.84e-45 = |
* b0 S 8.0% p= & 8o%
g g 6.0% - g 6.0% -
g 60% - g 3
g g 40% - E 4.0% -
40% -
20% - 20% - 20% -
0.0% - v 0.0% — 0.0% . v
8 6 4 2 0 8 6 4 2 0 -8 6 4 2 0
OPLS3e based docking score (kcal/mol) RESP based docking score (kcal/mol) DDEC4 based docking score (kcal/mol)
D E
10 18 ams —e— OPLS3e
. . \/‘»~ *v’*\\\‘ —o— DOECA
16 ~ RESP
2 08 © s
& L R
TR €
20 g 12 -
10 -
§ 04 - S o
v = 8 - o
£ o2 — OPLS3e (AUC = 0.7975) v
’ —— DDEC4 (AUC = 0.8780)
~—— RESP (AUC = 0.7802) 4
0.0 02 04 06 08 1.0 50 75 100 125 150 175 200 225 250
False Positive Rate Top Compounds

Figure 4. Performance of OPLS3e, RESP, and DDEC4 charges on virtual screening. The screening power (A—C), AUC value under ROC curve
(D), and the enrichment factor (E) are used as the metrics for comparison.
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B METHODS

Data Collection. This study utilized approximately
130,000 organic small molecules to train ChargeNet models,
encompassing three types of atomic charge: DDEC4 (¢ = 4),
DDEC78 (& = 78), and RESP. These molecules were sourced
from the data set curated by Bleiziffer et al.'” This work
directly utilized the high-level quantum mechanical calcu-
lations conducted by Bleiziffer et al. for DDEC4 (& = 4) and
DDEC78 (¢ = 78) atomic charges. Specifically, ¢ = 4 was
employed to simulate atomic charges in protein environments,
while € = 78 was used to represent those in solvent
environments. Since RESP atomic charges could not be
directly obtained for the organic small molecules, we first
optimized all molecules in the data set using the semiempirical
AMI1 method.” Subsequently, the RESP atomic charges were
calculated by deriving each molecule’s electrostatic potential
using the Hartree—Fock self-consistent field (SCF) method at
the 6—31G* level of theory*” implemented in the
Gaussian16*® program. Additionally, using the same computa-
tional setup, we computed RESP charges for an external test
set comprising 1000 randomly selected molecules extracted
from the ChEMBL database.”” As shown in Figure 5, the
elemental compositions across the DDEC4, DDEC78, RESP,
and external test set are largely consistent, with hydrogen (H),
cartbon (C), nitrogen (N), and oxygen (O) being the
predominant elements, while other elements such as sulfur
(S), fluorine (F), chlorine (Cl), bromine (Br), iodine(I), and
phosphorus (P) appear in much smaller proportions. Notably,
silicon (Si) is present only in the external test set. These
calculations ensure consistency in charge derivation and
provide a robust data set for model evaluation.

Data Preprocessing. First, we calculated the features of
each atom and bond using RDKit. Considering atoms as
nodes, to maintain the same length of molecules (containing
the same number of atoms), pseudoatoms with zero features
were added to each molecule. Each atom (including
pseudoatoms) was represented by a 35-bit vector. Therefore,
each molecule could ultimately be represented by an n X 35
matrix (where 7 is the number of atoms in the molecule). The
value of n depends on the maximum number of atoms per
batch in the data set. Meanwhile, atomic coordinates were
input separately into the model as atomic 3D information for
coordinate updates, maintaining network equivariance.

Graph Representation and Feature Extraction. Mo-
lecular descriptors play a crucial role in predicting molecular
properties. By selecting appropriate descriptors, considering
diversity and complementarity, performing dimensionality
reduction, data normalization, feature engineering, and data
preprocessing, the expressiveness and predictive performance
of the descriptors can be significantly enhanced, thereby
achieving more accurate molecular property predictions. The
design of this module was based on the studies by Jiang et al.*®
and Wang et al.”” In this section, each molecule was abstracted
as an undirected graph G = (V, E), where V represents atoms
and E represents edges, with (i, j) € E indicating the existence
of a chemical bond between atoms i and j. Since the
electrostatic force is a long-range interaction, each atom pair
was assigned an edge, forming a fully connected graph. The
fully connected graph allows each atom to interact with all
other atoms, thereby enhancing the model’s ability to capture
long-range interactions. Many recent physics-based neural
networks also avoid relying solely on covalent bonds to

construct molecular graphs. Instead, they commonly apply
distance-based cutoffs, typically in the range of 4—6 A, to
incorporate long-range interactions. Our fully connected graph
can be viewed as a generalized form of this strategy. For large
molecular systems, where computational cost becomes a
concern, we plan to integrate distance-based cutoffs in future
work to balance physical expressiveness and efficiency. In this
work, only node feature descriptors were utilized (as shown in
Table 3). These features include common atomic information,

Table 3. Node Feature Descriptors Used in this Study

type attributes name descriptions

2D atom type numeric encoding of atom types

num atom number of atoms

IsAromatic whether the molecule is aromatic [0, 1]
hybridization hybridization mode

NumHs number of hydrogen atoms
FormalCharge FormalCharge

ExplicitValence ExplicitValence

ImplicitValence ImplicitValence

NumExplicitHs NumExplicitHs

NumRadicalElectrons NumRadicalElectrons

3D Coordination Coordination

with the atomic coordinates being the sole 3D-specific feature.
Spatial distances are essential for describing atomic geometries,
emphasizing the importance of including coordinate informa-
tion in molecular representations.

Equivariant Graph Neural Networks. Equivariance
refers to the property where the output of a mapping
transformation changes predictably with the input trans-
formation. If the mapping transformation W satisfies the
following equivariance condition for all u belonging to the
transformation group G

Vu € G, YTyl = T,IPIf]] (1)

For the transformation group G, input feature map f, and
group actions T, and T,. Here, T, represents the action of
transformation u on the input features, while T, represents the
action of transformation u on the output features. Additionally,
since it is desired that the operations of consecutive
transformations u and v on the feature map are equivalent to
directly transforming the feature map by the combined
transformation uv, it is required that T,T, = T, where uv is
the group product of transformations u and v. The same
requirement applies to T;. Specifically, in equivariant graph
neural networks, their information propagation and update
processes are as follows.

1 41 1 12
m; = %(hir h,‘; [loe; — x,“ , aij)

)
xilJrl = xil + Cz (xil - x]l)ggc(ml])
j#i 3)
m; = Z my
ieN(i) (4)
hilH = (Ph(hil: m,) (5)
For a graph G = (V, E) with node v; and edge ¢;, where each

node feature is encoded as h; and the #n-dimensional
coordinates associated with each graph node are denoted as
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x; as input. It differs from the original graph neural networks
(GNNs) mainly in eqs 2 and 3. In eq 2, the squared relative

distance between two coordinates (”in — x]l||2) is passed as

input to the edge information ¢;. The node features hf,h;, and
edge attribute a; are also provided as input to edge information
as in the case of GNNE.

In eq 3, the position of each particle xi is updated by the
weighted sum of all relative differences (x} — x}l) The weight of
this sum is provided by the output of a function, which accepts
the edge embedding mij from the previous edge operation as
input and outputs a scalar value. This is also the reason why it
can maintain equivariance.

Attention Mechanism. The standard attention mecha-
nism can be considered as consisting of three components: a
set of query vectors Q; € R, where i = 1--m, a set of key
vectors K; € R?, where j = 1--n, and a set of value vectors Ve
R?, where j = 1---n, where r and p are the dimensions of low-
dimensional embeddings. Keys K; and values V; are typically
interpreted as being associated with the same point j. For a
given query Q, the attention mechanism can be written as

n

Attn(Qi, Kj, V]) = Z ScoreijVj

j=1 (6)
exp(QtTK])
7=18¥P\,; Ky (7)

where we use softmax as the nonlinearity applied to the
weights. Generally, the number of query vectors does not have
to be equal to the number of input points. In the case of self-
attention, the query, key, and value vectors are embeddings of
input features.

Q= ho(f) (8)
K = h(f) 9
V = hy(f) (10)

where Q, K, V are the output values of each node, and Score;
reflects the similarity between the query Q and the key K. For
clarity, we only represent the calculation of single-head
attention and omit the bias terms.

ChargeNet. The ChargeNet model takes graph node
features and 3D coordinates as input to construct a fully
connected molecular graph, integrating equivariant graph
neural networks and graph attention mechanisms, fully
utilizing global information and symmetry to effectively
aggregate features of molecules for predicting atomic charges.

In this model, based on the framework of equivariant graph
neural networks (EGNN), a graph attention mechanism is
used as the message passing strategy for information
aggregation. It mainly consists of the following modules:
Embedding layer: Node and edge features are mapped through
fully connected layers for representation learning and trans-
formation into continuous hidden layer space. Equivariant
graph attention module: The features h;, where i = 1--m,
entering the hidden space are transformed to obtain a set of
query vectors (query), key vectors (key), and value vectors
(value). The attention weights obtained from the calculation of
Q and K are multiplied with edge information to obtain feature
information for each edge.

141
95|

e )7 (11)

Node feature update module: node value vectors are
concatenated with edge information Scorefj weighted by
attention weights to obtain fused features. Linear operations
are performed on the fused features through fully connected
layers (linear) for weight adjustment and dimension trans-
formation, resulting in updated node features

Scorefj = Softmax

Wt =nl 4+ wl-j(Scoreij @ v]l) (12)

Thus, node updates are achieved by integrating value vectors
and edge information weighted by attention weights,
preserving node information while considering associated
information with other nodes, resulting in more representative
updated node features.

Edge feature update module: Input information h is
processed through an edge operation function to generate
edge information Scoregj, which is fused with current-level
information to obtain the representation of the next layer.
+1

E,]

= eé + wij(Scorefj) (13)

This involves capturing relationships between nodes,
connectivity, and other edge-related information. The purpose
of this stage is to provide important information about edges
for subsequent node feature updates, ensuring that the network
better understands local relationships and connectivity in the
graph structure.

Coordinate update module: The coordinate update module
is responsible for ensuring the equivariance of the neural
network. In the process of coordinate updating, considering
that a; is an element in the score matrix Scorefj, to maintain
equivariance, we only need to replace a; in eq 3 with a new
term representing edge information. This is a crucial part for
maintaining coordinate equivariance. Through this replace-
ment, the equivariance of the network is guaranteed, and the
specific coordinate update process can be referred to from eqs
2 and 3. This ensures that the changes in coordinates are
consistent with the changes in edge features, thereby
maintaining the sensitivity of the network to input data
equivariance.

Model Training. We built the model based on the
PyTorch® framework. The DDEC4 (& = 4), DDEC78 (e =
78), and RESP charge data sets are split into a 80:10:10 ratio
for training, validation, and validation sets, respectively.

Here, we optimized using gradient descent in the Adam
optimizer, with Mean Squared Error (MSE) Loss used as the
loss function for the charge prediction task. During training,
early stopping,”” dropout,”" and regularization were employed
to prevent overfitting and reduce training time. The best
validation performance was generally achieved around 50
epochs. In addition to a systematic hyperparameter search, the
random search was employed to explore optimal combinations
due to the large number of hyperparameters. A 10-fold cross-
validation strategy was utilized for model construction, leading
to the identification of three key hyperparameters, including
the optimal number of layers.
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